cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A338614 Number of permutations p of [n] such that |p(i) - p(i-1)| <= 3 and |p(i) - p(i-2)| <= 4.

Original entry on oeis.org

1, 1, 2, 6, 24, 72, 124, 210, 394, 810, 1652, 3168, 5816, 10640, 19794, 37292, 70298, 131618, 245146, 456430, 851670, 1592008, 2976326, 5559808, 10379010, 19374184, 36175422, 67562524, 126185322, 235650426, 440038528
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(s, x, y) option remember; `if`(s={}, 1, add(
          `if`((x=0 or abs(x-j)<=4) and (y=0 or abs(y-j)<=3),
              b(s minus {j}, y, j), 0), j=s))
        end:
    a:= n-> b({$1..n}, 0$2):
    seq(a(n), n=0..20);

A348534 Number of permutations p of [n] whose absolute differences between consecutive elements yield up-down sequences.

Original entry on oeis.org

1, 1, 2, 2, 8, 20, 82, 326, 1678, 8776, 54804, 357910, 2646340, 20551986, 176420758, 1586656630, 15504954504, 158675287132, 1738817196038, 19931418239724, 242312687882510
Offset: 0

Views

Author

Alois P. Heinz, Oct 25 2021

Keywords

Comments

Number of permutations p of [n] such that |p(i-1)-p(i)| < |p(i)-p(i+1)| if i is even and |p(i-1)-p(i)| > |p(i)-p(i+1)| if i is odd.

Examples

			a(0) = 1: (), the empty permutation.
a(1) = 1: 1.
a(2) = 2: 12, 21.
a(3) = 2: 213, 231.
a(4) = 8: 1243, 2134, 2143, 2413, 3142, 3412, 3421, 4312.
a(5) = 20: 12435, 12453, 21435, 21453, 23541, 31425, 31452, 31542, 32451, 32541, 34125, 34215, 35124, 35214, 35241, 43125, 45213, 45231, 54213, 54231.
a(6) = 82: 124356, 124365, 125364, 125634, ..., 652143, 652413, 653412, 653421.
		

Crossrefs

Programs

  • Maple
    b:= proc(s, x, y) option remember; (n-> `if`(n=0, 1, add((d->
         `if`(x=0 or n::even and xd, b(s minus {j},
         `if`(y=0, 0, d), j), 0))(abs(y-j)), j=s)))(nops(s))
        end:
    a:= n-> b({$1..n}, 0$2):
    seq(a(n), n=0..12);
  • Mathematica
    b[s_, x_, y_] := b[s, x, y] = Function[n, If[n == 0, 1, Sum[Function[d,
         If[x == 0 || EvenQ[n] && x < d || OddQ[n] && x > d, b[s ~Complement~
         {j}, If[y == 0, 0, d], j], 0]][Abs[y - j]], {j, s}]]][Length[s]];
    a[n_] := b[Range[n], 0, 0];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Mar 07 2022, after Alois P. Heinz *)
Showing 1-2 of 2 results.