A338784 a(n) is the smallest number with exactly n divisors such that all its divisors end with the same digit (which is necessarily 1).
1, 11, 121, 341, 14641, 3751, 1771561, 13981, 116281, 453871, 25937424601, 153791, 3138428376721, 54918391, 14070001, 852841, 45949729863572161, 4767521, 5559917313492231481, 18608711, 1702470121, 804060162631, 81402749386839761113321, 9381251, 13521270961, 97291279678351, 195468361
Offset: 1
Examples
121 is the smallest number whose 3 divisors (1, 11, 121) end with 1, hence a(3) = 121. 3751 is the smallest number whose 6 divisors (1, 11, 31, 121, 341, 3751) end with 1, hence a(6) = 121. a(18) = 4767521 = 11^2 * 31^2 * 41 as it has 18 divisors all of which end in 1. - _David A. Corneth_, Nov 09 2020
Links
- David A. Corneth, Table of n, a(n) for n = 1..966
- Project Euler, Problem 474: Last digits of divisors.
Programs
-
PARI
a(n) = {my(pr); if(n==1, return(1)); if(isprime(n), return(11^(n-1))); forstep(i = 1, oo, 10, f = factor(i); if(numdiv(f) == n, pr = 1; for(j = 1, #f~, if(f[j, 1]%10 != 1, pr = 0; next(2) ) ) ); if(pr, return(i)); ) } \\ David A. Corneth, Nov 09 2020
Formula
Extensions
Data corrected by David A. Corneth, Nov 09 2020
Comments