A338878 Numerators in a set of expansions of the single-term Machin-like formula for Pi.
1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 5, 5, 5, 1, 1, 3, 1, 1, 3, 1, 1, 7, 7, 7, 7, 7, 1, 1, 4, 4, 2, 2, 4, 4, 1, 1, 9, 3, 3, 9, 3, 3, 9, 1, 1, 5, 5, 5, 1, 1, 5, 5, 5, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1
Offset: 1
Examples
Triangle T(n,k) begins: k= 1 2 3 4 5 6 n=1: 1; n=2: 1, 1; n=3: 1, 3, 1; n=4: 1, 2, 2, 1; n=5: 1, 5, 5, 5, 1; n=6: 1, 3, 1, 1, 3, 1; For example, for row n = 3 the corresponding expansion formula is Pi/4 = arctan(1/5) + arctan(3/11) + arctan(1/3) and the numerators are 1,3,1. At n = 3, n = 4 and n = 5 the rows are {1,3,1}, {1,2,2,1} and {1,5,5,5,1} and the primes are 3, 2 and 5, respectively.
Links
- Sanjar Abrarov, Table of n, a(n) for n = 1..120
- Sanjar M. Abrarov, Rehan Siddiqui, Rajinder K. Jagpal, and Brendan M. Quine, Unconditional applicability of the Lehmer's measure to the two-term Machin-like formula for pi, arXiv:2004.11711 [math.GM], 2020.
Programs
-
Mathematica
(*Define variable*) PiOver4[m_] := Sum[ArcTan[m/((k - 1)*k + m^2)], {k, 1, m}]; (*Expansions*) m := 1; While[m <= 10, If[m == 1, Print["\[Pi]/4 = ArcTan[1/1]"], Print["\[Pi]/4 = ", PiOver4[m]]]; m = m + 1]; (*Verification*) m := 1; While[m <= 10, Print[PiOver4[m] == Pi/4]; m = m + 1]; (*Numerators*) For[n = 1, n <= 15, n++, {k := 1; sq := {}; While[n >= k, AppendTo[sq, n/GCD[n, k*(k - 1)]]; k++]}; Print[sq]];
-
PARI
T(n, k) = if (n>=k, n/gcd(n,k*(k - 1))) matrix(10, 10, n, k, T(n, k)) \\ Michel Marcus, Nov 14 2020
Formula
T(n,k) = numerator(n/((n-k)*(n-k+1) + n^2)) = n/gcd(n,k*(k-1)), for n>=1 and 1 <= k <= n.
Pi/4 = Sum_{k=1..n} arctan(T(n,k) / A338879(n,k)).
Comments