cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338899 Concatenated sequence of prime indices of squarefree semiprimes (A006881).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 1, 5, 1, 6, 2, 5, 1, 7, 3, 4, 1, 8, 2, 6, 1, 9, 2, 7, 3, 5, 2, 8, 1, 10, 1, 11, 3, 6, 2, 9, 1, 12, 4, 5, 1, 13, 3, 7, 1, 14, 2, 10, 4, 6, 2, 11, 1, 15, 3, 8, 1, 16, 2, 12, 3, 9, 1, 17, 4, 7, 1, 18, 2, 13, 2, 14, 4, 8, 1, 19, 2, 15
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2020

Keywords

Comments

This is a triangle with two columns and strictly increasing rows, namely {A270650(n), A270652(n)}.
A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}     57: {2,8}     106: {1,16}    155: {3,11}
     10: {1,3}     58: {1,10}    111: {2,12}    158: {1,22}
     14: {1,4}     62: {1,11}    115: {3,9}     159: {2,16}
     15: {2,3}     65: {3,6}     118: {1,17}    161: {4,9}
     21: {2,4}     69: {2,9}     119: {4,7}     166: {1,23}
     22: {1,5}     74: {1,12}    122: {1,18}    177: {2,17}
     26: {1,6}     77: {4,5}     123: {2,13}    178: {1,24}
     33: {2,5}     82: {1,13}    129: {2,14}    183: {2,18}
     34: {1,7}     85: {3,7}     133: {4,8}     185: {3,12}
     35: {3,4}     86: {1,14}    134: {1,19}    187: {5,7}
     38: {1,8}     87: {2,10}    141: {2,15}    194: {1,25}
     39: {2,6}     91: {4,6}     142: {1,20}    201: {2,19}
     46: {1,9}     93: {2,11}    143: {5,6}     202: {1,26}
     51: {2,7}     94: {1,15}    145: {3,10}    203: {4,10}
     55: {3,5}     95: {3,8}     146: {1,21}    205: {3,13}
		

Crossrefs

A270650 is the first column.
A270652 is the second column.
A320656 counts multiset partitions using these rows, or factorizations into squarefree semiprimes.
A338898 is the version including squares, with columns A338912 and A338913.
A338900 gives row differences.
A338901 gives the row numbers for first appearances.
A001221 and A001222 count distinct/all prime indices.
A001358 lists semiprimes.
A004526 counts 2-part partitions, with strict case shifted right once.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A046315 and A100484 list odd and even semiprimes.
A046388 lists odd squarefree semiprimes.
A166237 gives first differences of squarefree semiprimes.

Programs

  • Mathematica
    Join@@Cases[Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&],k_:>PrimePi/@First/@FactorInteger[k]]