A338905 Irregular triangle read by rows where row n lists all squarefree semiprimes with prime indices summing to n.
6, 10, 14, 15, 21, 22, 26, 33, 35, 34, 39, 55, 38, 51, 65, 77, 46, 57, 85, 91, 58, 69, 95, 119, 143, 62, 87, 115, 133, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205, 259, 341, 377, 391, 106, 141
Offset: 3
Examples
Triangle begins: 6 10 14 15 21 22 26 33 35 34 39 55 38 51 65 77 46 57 85 91 58 69 95 119 143 62 87 115 133 187 74 93 145 161 209 221 82 111 155 203 247 253 86 123 185 217 299 319 323
Crossrefs
A004526 (shifted right) gives row lengths.
A025129 (shifted right) gives row sums.
A056239 gives sum of prime indices (Heinz weight).
A339116 is a different triangle whose diagonals are these rows.
A005117 lists squarefree numbers.
A087112 groups semiprimes by greater factor.
A168472 gives partial sums of squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
Programs
-
Mathematica
Table[Sort[Table[Prime[k]*Prime[n-k],{k,(n-1)/2}]],{n,3,10}]
Comments