A338934 Square array T(i,j) = Sum_{k=0...min(i,j)} C(i,k)*C(j,k)*C(2*k,k) (i>=0,j>=0), read by antidiagonals.
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 15, 7, 1, 1, 9, 31, 31, 9, 1, 1, 11, 53, 93, 53, 11, 1, 1, 13, 81, 213, 213, 81, 13, 1, 1, 15, 115, 411, 639, 411, 115, 15, 1, 1, 17, 155, 707, 1551, 1551, 707, 155, 17, 1, 1, 19, 201, 1121, 3239, 4653, 3239, 1121, 201, 19, 1
Offset: 0
Examples
There are T(1,1)*C(2,1)=6 ways to write the vector (1,1,1,1) as a sum of vectors containing two occurrences of the number 1 : (1,1,0,0)+(0,0,1,1), (0,0,1,1)+(1,1,0,0), (1,0,1,0)+(0,1,0,1), (0,1,0,1)+(1,0,1,0), (1,0,0,1)+(0,1,1,0), (0,1,1,0)+(1,0,0,1). The square array T(i,j) (i >= 0, j >= 0) begins: 1, 1, 1, 1, 1, 1, ... 1, 3, 5, 7, 9, 11, ... 1, 5, 15, 31, 53, 81, ... 1, 7, 31, 93, 213, 411, ... 1, 9, 53, 213, 639, 1551, ... 1, 11, 81, 411, 1551, 4653, ... ...
Programs
-
Mathematica
T[i_,j_]:=Sum[Binomial[i,k]Binomial[j,k]Binomial[2k,k],{k,0,Min[i,j]}]; Flatten[Table[T[i-j,j],{i,0,10},{j,0,i}]] (* Stefano Spezia, Nov 17 2020 *)
Extensions
More terms from Stefano Spezia, Nov 17 2020
Comments