cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338952 Number of oriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.

Original entry on oeis.org

1, 137548893254081168086800768, 11046328890861011039111168376671536861388643, 10897746068379654103881579020805286236644252743361724416
Offset: 1

Views

Author

Robert A. Russell, Nov 17 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. There are 576 elements in the rotation group of the 24-cell. They divide into 20 conjugacy classes. The first formula is obtained by averaging the edge (or face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Count Even Cycle Indices Count Even Cycle Indices
1 x_1^96 6+6+36+36 x_4^24
72 x_1^4x_2^46 32 x_2^3x_6^15
1+18 x_2^48 8+8+32 x_6^16
32 x_1^6x_3^30 72+72 x_8^12
8+8+32 x_3^32 48+48 x_12^8

Crossrefs

Cf. A338953 (unoriented), A338954 (chiral), A338955 (achiral), A338956 (exactly n colors), A338948 (vertices, facets), A331350 (5-cell), A331358 (8-cell edges, 16-cell faces), A331354 (16-cell edges, 8-cell faces), A338964 (120-cell, 600-cell).

Programs

  • Mathematica
    Table[(96n^8+144n^12+48n^16+32n^18+84n^24+48n^32+32n^36+19n^48+72n^50+n^96)/576,{n,15}]

Formula

a(n) = (96*n^8 + 144*n^12 + 48*n^16 + 32*n^18 + 84*n^24 + 48*n^32 + 32*n^36 + 19*n^48 + 72*n^50 + n^96) / 576.
a(n) = Sum_{j=1..Min(n,96)} A338956(n) * binomial(n,j).
a(n) = A338953(n) + A338954(n) = 2*A338953(n) - A338955(n) = 2*A338954(n) + A338955(n).