A338981 Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
0, 1, 92307499707443390526727850063502, 124792381938502167392061689732085833655832902312754962, 122697712831831745940423467267565845711242845618544066030140191642464
Offset: 0
Links
- Robert A. Russell, Table of n, a(n) for n = 0..120
Crossrefs
Programs
-
Mathematica
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*) CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50+bp[17]/10+bp[19]/10+bp[20]/360+bp[22]/36+bp[23]/12+7bp[24]/300+bp[27]/12+bp[30]/240+bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400+bp[61]/240+bp[62]/32+bp[75]/240+bp[120]/14400,x]
Formula
A338965(n) = Sum_{j=1..Min(n,120)} a(n) * binomial(n,j).
G.f.: bp(4)/15 + bp(6)/10 + bp(8)/15 + bp(10)/12 + 7bp(12)/300 + bp(16)/50 + bp(17)/10 + bp(19)/10 + bp(20)/360 + bp(22)/36 + bp(23)/12 + 7bp(24)/300 + bp(27)/12 + bp(30)/240 + bp(31)/8 + bp(32)/50 + bp(40)/360 + bp(44)/36 + bp(60)/14400 + bp(61)/240 + bp(62)/32 + bp(75)/240 + bp(120)/14400, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
Comments