A339011 Sum over all partitions of n of the product of the number of parts and the number of distinct parts.
0, 1, 3, 8, 17, 34, 61, 107, 176, 284, 442, 676, 1007, 1483, 2140, 3055, 4299, 5993, 8255, 11284, 15272, 20529, 27373, 36274, 47735, 62484, 81293, 105251, 135555, 173818, 221836, 282003, 356980, 450256, 565765, 708537, 884296, 1100287, 1364736, 1687952, 2081724
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Programs
-
Maple
b:= proc(n, i, p, d) option remember; `if`(n=0, d*p, `if`(i<1, 0, add(b(n-i*j, i-1, p+j, `if`(j=0, d, d+1)), j=0..n/i))) end: a:= n-> b(n$2, 0$2): seq(a(n), n=0..50); # second Maple program: b:= proc(n, i) option remember; `if`(n<=0 or i=0, [0$2], `if`(i=1, [1, n], b(n, i-1)+ (p-> p+[0, p[1]])(b(n-i, i)))) end: a:= proc(n) option remember; b(n$2)[2]+`if`(n<0, 0, a(n-1)) end: seq(a(n), n=0..100); # Alois P. Heinz, Jul 25 2022
-
Mathematica
b[n_, i_, p_, d_] := b[n, i, p, d] = If[n == 0, d*p, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + j, If[j == 0, d, d + 1]], {j, 0, n/i}]]]; a[n_] := b[n, n, 0, 0]; a /@ Range[0, 50] (* Jean-François Alcover, Mar 09 2021, after Alois P. Heinz *)