A339033 Triangle read by rows, T(n, k) for 0 <= k <= n. T(n, 0) = 0^n; T(n, n) = n!; otherwise T(n, k) = (n + 1 - k)*(k - 1)!.
1, 0, 1, 0, 2, 2, 0, 3, 2, 6, 0, 4, 3, 4, 24, 0, 5, 4, 6, 12, 120, 0, 6, 5, 8, 18, 48, 720, 0, 7, 6, 10, 24, 72, 240, 5040, 0, 8, 7, 12, 30, 96, 360, 1440, 40320, 0, 9, 8, 14, 36, 120, 480, 2160, 10080, 362880, 0, 10, 9, 16, 42, 144, 600, 2880, 15120, 80640, 3628800
Offset: 0
Examples
Triangle starts: 0: [1] 1: [0, 1] 2: [0, 2, 2] 3: [0, 3, 2, 6] 4: [0, 4, 3, 4, 24] 5: [0, 5, 4, 6, 12, 120] 6: [0, 6, 5, 8, 18, 48, 720] 7: [0, 7, 6, 10, 24, 72, 240, 5040] 8: [0, 8, 7, 12, 30, 96, 360, 1440, 40320] 9: [0, 9, 8, 14, 36, 120, 480, 2160, 10080, 362880]
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, page 831.
Programs
-
Mathematica
A339033[n_, k_] := Which[k == 0, Boole[n == 0], n == k, n!, True, (n+1-k)*(k-1)!]; Table[A339033[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 31 2024 *)
-
SageMath
def A339033(n, k): if k == 0: return 0^n if n == k: return factorial(n) return (n + 1 - k)*factorial(k - 1) for n in (0..10): print([A339033(n, k) for k in (0..n)]) def A339033Row(n): S = [0^n] for k in range(n, 0, -1): for p in Partitions(n, max_part=k, inner=[k], length=n+1-k): S.append(p.aut()) return S for n in (0..10): print(A339033Row(n))
Formula
T(n, k) = n! / A092271(n, k) for k > 0.
Comments