A339035 k is prime and 2*(k+1) is Zumkeller.
2, 5, 11, 13, 19, 23, 29, 41, 43, 47, 53, 59, 79, 83, 89, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 167, 173, 179, 181, 191, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 317, 347, 349, 353, 359, 367, 379, 383, 389, 401, 409, 419, 431, 433, 439, 443
Offset: 1
Keywords
Examples
13 is prime and 2*(13+1) = 28 is Zumkeller, so 13 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Split:= proc(S, s, t) option remember; local m, Sp; if t = 0 then return true fi; if t > s then return false fi; m:= max(S); Sp:= S minus {m}; (t >= m and procname(Sp,s-m,t-m)) or procname(Sp,s-m,t) end proc: isZumkeller:= proc(n) local D,sigma; D:= numtheory:-divisors(n); sigma:= convert(D,`+`); sigma::even and Split(D, sigma, sigma/2) end proc: select(n -> isprime(n) and isZumkeller(2*(n+1)), [2,seq(i,i=3..1000)]); # Robert Israel, Dec 22 2020
-
Mathematica
zumkellerQ[n_]:=Module[{d=Divisors[n],ds,x},ds=Total[d];If[OddQ[ds],False,SeriesCoefficient[Product[1+x^i,{i,d}],{x,0,ds/2}]>0]]; Select[Prime[Range[100]],zumkellerQ[2*(#+1)]&] (* zumkellerQ by Jean-François Alcover at A320518 *)
Comments