A339055 Values taken by d(k^2)/d(k) where d(k) is the number of divisors of k and when this ratio is an integer.
1, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 5, 5, 3, 3, 3, 3, 3, 3, 5, 5, 5, 3, 3, 5, 3, 5, 3, 3, 3, 3, 3, 5, 5, 3, 3, 5, 5, 5, 3, 3, 3, 3, 5, 3, 3, 3, 5, 3, 3, 3, 5, 5, 5, 5, 3, 3, 3, 3, 3, 5, 5, 5, 5, 3, 3, 5, 3, 5, 5, 3, 3, 3, 3, 5, 3, 3, 3, 3, 5, 3, 5, 3, 5, 3, 5
Offset: 1
Keywords
Examples
The 4th number k such that d(k^2)/d(k) is an integer is A217584(4) = 400, 400 has 15 divisors and 400^2 = 160000 has 45 divisors, so, a(4) = 45/15 = 3.
References
- Marcin E. Kuczma, International Mathematical Olympiads, 1986-1999, The Mathematical Association of America, 2003, pages 134-135.
Links
- The IMO Compendium, Problem 3, 39th IMO 1998.
- Index to sequences related to Olympiads.
Programs
-
Maple
for n from 1 to 600 do q:= tau(n^4)/tau(n^2); if q = floor(q) then print(q); else fi; od:
-
Mathematica
Select[DivisorSigma[0, #^2]/DivisorSigma[0, #] & /@ Range[10^5], IntegerQ] (* Amiram Eldar, Nov 23 2020 *)
-
PARI
lista(nn) = {my(q); for (n=1, nn, if (denominator(q=numdiv(n^2)/numdiv(n)) == 1, print1(q, ", ")););} lista(100000) \\ Michel Marcus, Nov 23 2020
Comments