A339059 Number of compositions (ordered partitions) of n into distinct parts congruent to 1 mod 4.
1, 1, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 4, 6, 0, 1, 4, 6, 0, 1, 6, 12, 0, 1, 6, 18, 24, 1, 8, 24, 24, 1, 8, 30, 48, 1, 10, 42, 72, 1, 10, 48, 120, 121, 12, 60, 144, 121, 12, 72, 216, 241, 14, 84, 264, 361, 14, 96, 360, 601, 16, 114, 432, 841, 736, 126, 552, 1201, 738
Offset: 0
Keywords
Examples
a(15) = 6 because we have [9, 5, 1], [9, 1, 5], [5, 9, 1], [5, 1, 9], [1, 9, 5] and [1, 5, 9].
Programs
-
Mathematica
nmax = 70; CoefficientList[Series[Sum[k! x^(k (2 k - 1))/Product[1 - x^(4 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=0} k! * x^(k*(2*k - 1)) / Product_{j=1..k} (1 - x^(4*j)).