A339060 Number of compositions (ordered partitions) of n into distinct parts congruent to 3 mod 4.
1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 4, 1, 0, 6, 4, 1, 0, 6, 6, 1, 0, 12, 6, 1, 0, 18, 8, 1, 24, 24, 8, 1, 24, 30, 10, 1, 48, 42, 10, 1, 72, 48, 12, 1, 120, 60, 12, 121, 144, 72, 14, 121, 216, 84, 14, 241, 264, 96, 16, 361, 360, 114, 16, 601, 432, 126, 18, 841
Offset: 0
Keywords
Examples
a(21) = 6 because we have [11, 7, 3], [11, 3, 7], [7, 11, 3], [7, 3, 11], [3, 11, 7] and [3, 7, 11].
Programs
-
Mathematica
nmax = 75; CoefficientList[Series[Sum[k! x^(k (2 k + 1))/Product[1 - x^(4 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=0} k! * x^(k*(2*k + 1)) / Product_{j=1..k} (1 - x^(4*j)).