A339061 Least integer j such that H(k+j)>=n+1, where k is the least integer to satisfy H(k)>=n, and H(k) is the sum of the first k terms of the harmonic series.
1, 3, 7, 20, 52, 144, 389, 1058, 2876, 7817, 21250, 57763, 157017, 426817, 1160207, 3153770, 8572836, 23303385, 63345169, 172190019, 468061001, 1272321714, 3458528995, 9401256521, 25555264765, 69466411833, 188829284972, 513291214021
Offset: 0
Keywords
Examples
Define H(0)=0, H(k) = Sum_{i=1..k} 1/i for k=1,2,3,... a(0)=1: To reach n+1 from n=0 requires 1 additional term of the harmonic partial sum: H(0+1) = H(0) + 1/1 = H(1) = 1. a(1)=3: To reach n+1 from n=1 requires 3 additional terms of the harmonic partial sum: H(1+3) = H(1) + 1/(1+1) + 1/(1+2) + 1/(1+3) = H(4) = 2.08333.... a(2)=7: To reach n+1 from n=2 requires 7 additional terms of the harmonic partial sum: H(4+7) = H(4) + 1/(4+1) + 1/(4+2) + ... + 1/(4+6) + 1/(4+7) = H(11) = 3.01987.... a(3)=20: To reach n+1 from n=3 requires 20 additional terms of the harmonic partial sum: H(11+20) = H(11) + 1/(11+1) + 1/(11+2) + ... + 1/(11+19) + 1/(11+20) = H(31) = 4.02724....
Crossrefs
Programs
-
R
#set size of search space Max=10000000 #initialize sequence to empty seq=vector(length=0) #initialize partial sum to 0 partialsum=0 k=1 n=1 for(i in 1:Max){ partialsum=partialsum+1/i if(partialsum>=n){ seq=c(seq, k) k=0 n=n+1 } k=k+1 } #print sequence numbers below Max seq
Formula
a(n) ~ (e-1)*e^(n-gamma), where e is Euler's number and gamma is the Euler-Mascheroni constant.
Conjecture: a(n) = floor(1/2 + e^(n-gamma+1)) - floor(1/2 + e^(n-gamma)) for n > 1 where e is Euler's number and gamma is the Euler-Mascheroni constant. - Adam Hugill, Nov 06 2022