A339082 a(n) is the number m such that F(prime(m)) is the greatest prime Fibonacci divisor of F(n)^2 + 1 where F(n) is the n-th Fibonacci number, or 0 if no such prime factor exists.
2, 2, 3, 3, 4, 4, 3, 4, 5, 5, 6, 6, 5, 6, 7, 7, 3, 7, 7, 4, 9, 9, 4, 9, 9, 3, 10, 10, 2, 10, 10, 5, 4, 5, 5, 4, 6, 6, 0, 6, 14, 14, 3, 14, 15, 15, 4, 15, 15, 7, 4, 7, 7, 5, 2, 5, 5, 2, 2, 0, 4, 4, 6, 6, 4, 6, 9, 9, 0, 9, 9, 0, 3, 3, 5, 5, 3, 5, 5, 2, 23, 23, 7
Offset: 1
Keywords
Examples
a(15) = 7 because F(15)^2 + 1 = 610^2 + 1 = 372101 = 233*1597, 1597 = F(17) is the greatest prime Fibonacci divisor of 372101 and 17 is the 7th prime.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..30000
Programs
-
Maple
a:= proc(n) local i, F, m, t; F, m, t:= [1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1; for i from 3 while F[2]<=t do if isprime(F[2]) and irem(t, F[2])=0 then m:=i fi; F:= [F[2], F[1]+F[2]] od; numtheory[pi](m) end: seq(a(n), n=1..100); # Alois P. Heinz, Nov 25 2020
-
Mathematica
a[n_] := Module[{i, F = {1, 2}, m = 0, t}, t = MatrixPower[{{0, 1}, {1, 1}}, n][[2, 1]]^2 + 1; For[i = 3, F[[2]] <= t, i++, If[PrimeQ[F[[2]]] && Mod[t, F[[2]]] == 0, m = i]; F = {F[[2]], F[[1]] + F[[2]]}]; PrimePi[m]]; Array[a, 100] (* Jean-François Alcover, Dec 01 2020, after Alois P. Heinz *)
Comments