A339088 Number of compositions (ordered partitions) of n into distinct parts congruent to 1 mod 6.
1, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 4, 6, 0, 0, 0, 1, 4, 6, 0, 0, 0, 1, 6, 12, 0, 0, 0, 1, 6, 18, 24, 0, 0, 1, 8, 24, 24, 0, 0, 1, 8, 30, 48, 0, 0, 1, 10, 42, 72, 0, 0, 1, 10, 48, 120, 120, 0, 1, 12, 60, 144, 120, 0, 1, 12, 72, 216, 240, 0, 1, 14, 84, 264, 360
Offset: 0
Keywords
Examples
a(21) = 6 because we have [13, 7, 1], [13, 1, 7], [7, 13, 1], [7, 1, 13], [1, 13, 7] and [1, 7, 13].
Crossrefs
Programs
-
Mathematica
nmax = 83; CoefficientList[Series[Sum[k! x^(k (3 k - 2))/Product[1 - x^(6 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=0} k! * x^(k*(3*k - 2)) / Product_{j=1..k} (1 - x^(6*j)).