A339089 Number of compositions (ordered partitions) of n into distinct parts congruent to 5 mod 6.
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 4, 1, 0, 0, 0, 6, 4, 1, 0, 0, 0, 6, 6, 1, 0, 0, 0, 12, 6, 1, 0, 0, 0, 18, 8, 1, 0, 0, 24, 24, 8, 1, 0, 0, 24, 30, 10, 1, 0, 0, 48, 42, 10, 1, 0, 0, 72, 48, 12, 1, 0, 0, 120, 60, 12, 1, 0, 120, 144
Offset: 0
Keywords
Examples
a(33) = 6 because we have [17, 11, 5], [17, 5, 11], [11, 17, 5], [11, 5, 17], [5, 17, 11] and [5, 11, 17].
Crossrefs
Programs
-
Mathematica
nmax = 86; CoefficientList[Series[Sum[k! x^(k (3 k + 2))/Product[1 - x^(6 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=0} k! * x^(k*(3*k + 2)) / Product_{j=1..k} (1 - x^(6*j)).