A339100 a(n) = GCD({(2*n-k)*T(n,k)+(k+1)*T(n,k+1), k=0..n}), where T(n,k) stands for A214406 (the second-order Eulerian numbers of type B).
1, 6, 1, 60, 1, 42, 1, 120, 1, 66, 1, 5460, 1, 6, 1, 4080, 1, 798, 1, 3300, 1, 138, 1, 10920, 1, 6, 1, 1740, 1, 14322, 1, 8160, 1, 6, 1, 3838380, 1, 6, 1, 270600, 1, 12642, 1, 1380, 1, 282, 1, 371280, 1, 66, 1, 3180, 1, 798, 1, 3480, 1, 354, 1, 567867300
Offset: 1
Keywords
Examples
In A214406, row number 4 is: (k=0) (k=1) (k=2) (k=3) (k=4) 1 112 718 744 105 Now, (2*4-0)* 1 + (0+1)*112 = 120 (2*4-1)*112 + (1+1)*718 = 2220 (2*4-2)*718 + (2+1)*744 = 6540 (2*4-3)*744 + (3+1)*105 = 4140 (2*4-4)*105 + (4+1)* 0 = 420 The GCD of {120, 2220, 6540, 4140, 420} is 60, so a(4)=60.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1201
Programs
-
Mathematica
T[n_,k_]:=T[n,k]=If[n==0&&k==0,1,If[n==0||k<0||k>n,0,(4*n-2*k-1)*T[n-1,k-1]+(2*k+1)*T[n-1,k]]] A[n_]:=Table[(2*n-k)*T[n,k]+(k+1)*T[n,k+1],{k,0,n}]/.{List->GCD} Table[A[n],{n,1,100}]
-
PARI
r(n)=if(n==0,1,(r(n-1)*x/(1-x^2))') a(n)=my(p=(r(n))'*(1-x^2)^(2*n+1)/2);p/factorback(factor(p)) for(n=1,60,print1(a(n),", "))
Comments