cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339106 Triangle read by rows: T(n,k) = A000203(n-k+1)*A000041(k-1), n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 3, 1, 4, 3, 2, 7, 4, 6, 3, 6, 7, 8, 9, 5, 12, 6, 14, 12, 15, 7, 8, 12, 12, 21, 20, 21, 11, 15, 8, 24, 18, 35, 28, 33, 15, 13, 15, 16, 36, 30, 49, 44, 45, 22, 18, 13, 30, 24, 60, 42, 77, 60, 66, 30, 12, 18, 26, 45, 40, 84, 66, 105, 88, 90, 42, 28, 12, 36, 39, 75, 56, 132, 90, 154, 120, 126, 56
Offset: 1

Views

Author

Omar E. Pol, Nov 23 2020

Keywords

Comments

Conjecture 1: T(n,k) is the sum of all divisors of all (n - k + 1)'s in the n-th row of triangle A176206, assuming that A176206 has offset 1. The same for the triangle A340061.
Conjecture 2: the sum of row n equals A066186(n), the sum of all parts of all partitions of n.

Examples

			Triangle begins:
   1;
   3,  1;
   4,  3,  2;
   7,  4,  6,  3;
   6,  7,  8,  9,  5;
  12,  6, 14, 12, 15,  7;
   8, 12, 12, 21, 20, 21,  11;
  15,  8, 24, 18, 35, 28,  33,  15;
  13, 15, 16, 36, 30, 49,  44,  45,  22;
  18, 13, 30, 24, 60, 42,  77,  60,  66,  30;
  12, 18, 26, 45, 40, 84,  66, 105,  88,  90,  42;
  28, 12, 36, 39, 75, 56, 132,  90, 154, 120, 126, 56;
...
For n = 6 the calculation of every term of row 6 is as follows:
-------------------------
k   A000041        T(6,k)
1      1  *  12  =   12
2      1  *  6   =    6
3      2  *  7   =   14
4      3  *  4   =   12
5      5  *  3   =   15
6      7  *  1   =    7
.         A000203
-------------------------
The sum of row 6 is 12 + 6 + 14 + 12 + 15 + 7 = 66, equaling A066186(6).
		

Crossrefs

Mirror of A221529.
Row sums give A066186 (conjectured).
Main diagonal gives A000041.
Columns 1 and 2 give A000203.
Column 3 gives A074400.
Column 4 gives A272027.
Column 5 gives A274535.
Column 6 gives A319527.

Programs

  • Mathematica
    T[n_, k_] := DivisorSigma[1, n - k + 1] * PartitionsP[k - 1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, Jan 08 2021 *)
  • PARI
    T(n, k) = sigma(n-k+1)*numbpart(k-1); \\ Michel Marcus, Jan 08 2021

Formula

T(n,k) = sigma(n-k+1)*p(k-1), n >= 1, 1 <= k <= n.