A339125 Odd composite integers m such that A000032(m-J(m,5)) == 2*J(m,5) (mod m), where J(m,5) is the Jacobi symbol.
9, 49, 121, 169, 289, 361, 529, 841, 961, 1127, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 3751, 4181, 4489, 4901, 4961, 5041, 5329, 5777, 6241, 6721, 6889, 7381, 7921, 9409, 10201, 10609, 10877, 11449, 11881, 12769, 13201, 15251, 16129, 17161, 18081, 18769, 19321
Offset: 1
Keywords
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
- D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
- D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted)
Links
- Dorin Andrica and Ovidiu Bagdasar, On Generalized Lucas Pseudoprimality of Level k, Mathematics (2021) Vol. 9, 838.
Crossrefs
Programs
-
Mathematica
Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[LucasL[# - (j = JacobiSymbol[#, 5])] - 2*j, #] &] (* Amiram Eldar, Nov 26 2020 *)
Comments