A339126 Odd composite integers m such that A006497(m-J(m,13)) == 2*J(m,13) (mod m), where J(m,13) is the Jacobi symbol.
9, 25, 49, 119, 121, 289, 361, 529, 649, 833, 841, 961, 1089, 1189, 1369, 1681, 1849, 1881, 2023, 2209, 2299, 2809, 3025, 3481, 3721, 4187, 4489, 5041, 5329, 6241, 6889, 7139, 7921, 9409, 10201, 10241, 10609, 11449, 11881, 12769, 12871, 13833, 14041, 14161
Offset: 1
Keywords
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
- D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
- D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted)
Crossrefs
Programs
-
Mathematica
Select[Range[3, 15000, 2], CompositeQ[#] && Divisible[LucasL[# - (j = JacobiSymbol[#, 13]), 3] - 2*j, #] &] (* Amiram Eldar, Nov 26 2020 *)
Comments