cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339130 Odd composite integers m such that A003501(m-J(m,21)) == 2 (mod m) and gcd(m,21)=1, where J(m,21) is the Jacobi symbol.

Original entry on oeis.org

25, 121, 169, 275, 289, 361, 527, 529, 551, 575, 841, 961, 1369, 1681, 1807, 1849, 1919, 2209, 2783, 2809, 3025, 3481, 3721, 4033, 4489, 5041, 5329, 5777, 5983, 6049, 6241, 6479, 6575, 6889, 7267, 7645, 7921, 8959, 8993, 9361, 9409, 9775
Offset: 1

Views

Author

Ovidiu Bagdasar, Nov 24 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity
V(p-J(p,D)) == 2 (mod p) when p is prime, b=1 and D=a^2-4.
This sequence contains the odd composite integers with V(m-J(m,D)) == 2 (mod m).
For a=5 and b=1, we have D=21 and V(m) recovers A003501(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted)

Crossrefs

Cf. A003501.
Cf. A339125 (a=1, b=-1), A339126 (a=3, b=-1), A339127 (a=5, b=-1), A339128 (a=7, b=-1), A339129 (a=3, b=1), A339131 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3, 10000, 2], CoprimeQ[#, 21] && CompositeQ[#] && Divisible[2*ChebyshevT[# - JacobiSymbol[#, 21], 5/2] - 2, #] &] (* Amiram Eldar, Nov 26 2020 *)