cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339143 Number of (undirected) cycles in the graph C_6 X P_n.

Original entry on oeis.org

1, 94, 2301, 53644, 1248517, 29059380, 676374187, 15743068612, 366430841199, 8528932801462, 198516848612143, 4620617865735414, 107548097901476485, 2503256858519071030, 58265046263626611537, 1356159518571223920304, 31565557014929042873017
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2020

Keywords

Crossrefs

Cf. A180582 (Hamiltonian cycles), A339118, A339136, A339137, A339140, A339142.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXPk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339143(n):
        universe = make_CnXPk(6, n)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    print([A339143(n) for n in range(1, 20)])

Formula

Empirical g.f.: -x*(1 + 63*x - 418*x^2 + 287*x^3 + 840*x^4 + 1721*x^5 - 2540*x^6 + 3001*x^7 - 1149*x^8 - 544*x^9 + 90*x^10) / ((-1 + x)^2 * (-1 + 29*x - 136*x^2 + 55*x^3 + 190*x^4 + 645*x^5 - 626*x^6 + 953*x^7 - 409*x^8 - 178*x^9 + 30*x^10)). - Vaclav Kotesovec, Dec 09 2020