A339188 Highly insulated primes (see Comments for definition).
23, 53, 89, 211, 293, 409, 479, 631, 797, 839, 919, 1039, 1259, 1409, 1471, 1511, 1637, 1709, 1847, 1889, 2039, 2099, 2179, 2503, 2579, 2633, 2777, 2819, 2939, 3011, 3049, 3137, 3229, 3271, 3433, 3499, 3593, 3659, 3709, 3779, 3967, 4111, 4177, 4253, 4327, 4409, 4493, 4621, 4703, 4831
Offset: 1
Keywords
Examples
For the triplet (13,23,37) of insulated primes, the values of degree of insulation are D(13)=2, D(23)=4, and D(37)=3. Hence, 23 is the highly insulated prime.
Links
- François Marques, Table of n, a(n) for n = 1..10000
- Abhimanyu Kumar and Anuraag Saxena, Insulated primes, arXiv:2011.14210 [math.NT], 2020. See also Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 602-612. See p. 610.
Programs
-
Mathematica
Block[{s = {0}~Join~Array[Min[NextPrime[# + 1] - # - 1, # - NextPrime[# - 1, -1]] &@ Prime@ # &, 660, 2], t}, t = Array[If[#1 < #2 > #3, #4, Nothing] & @@ Append[s[[# - 1 ;; # + 1]], #] &, Length@ s - 2, 2]; Array[If[s[[#1]] < s[[#2]] > s[[#3]], #4, Nothing] & @@ Append[t[[# - 1 ;; # + 1]], Prime@ t[[#]]] &, Length@ t - 2, 2] ] (* Michael De Vlieger, Dec 11 2020 *)
-
PARI
A339188(n) = { \\ Return the list of the first n highly insulated primes my( HighInsulated=List([]), D(p)=min(nextprime(p+1)-p-1, p-precprime(p-1)); ); my( Dpred_ins=D(7), Pcur_ins=13, Dcur_ins=D(Pcur_ins) ); local( Dpred=D(Pcur_ins), p=nextprime(Pcur_ins+1), Dp=D(p), Pnext=nextprime(p+1), Dnext=D(Pnext) ); my(SearchNextInsulated() = until(Dp > max(Dpred,Dnext), Dpred = Dp; p = Pnext; Dp = Dnext; Pnext = nextprime(p+1); Dnext = D(Pnext); ); \\ At this point p is the first insulated prime > Dcur_ins ); while(#HighInsulated
max(Dpred_ins,Dp), Dpred_ins = Dcur_ins; Pcur_ins = p; Dcur_ins = Dp; SearchNextInsulated(); ); listput(HighInsulated,Pcur_ins); ); return(HighInsulated); } \\ François Marques, Dec 01 2020
Comments