cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Abhimanyu Kumar

Abhimanyu Kumar's wiki page.

Abhimanyu Kumar has authored 4 sequences.

A339270 a(n) is the largest m such that there is no prime except prime(n) from prime(n)-m+1 to prime(n)+m.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 4, 1, 2, 3, 1, 2, 4, 5, 1, 2, 3, 1, 2, 3, 4, 6, 3, 1, 2, 1, 2, 4, 3, 4, 1, 2, 1, 2, 5, 3, 4, 5, 1, 2, 1, 2, 1, 2, 11, 3, 1, 2, 4, 1, 2, 5, 5, 5, 1, 2, 3, 1, 2, 10, 3, 1, 2, 4, 5, 6, 1, 2, 4, 6, 5, 5, 3, 4, 6, 3, 4, 8, 1, 2, 1, 2, 3, 4, 6, 3, 1, 2, 4, 7
Offset: 1

Author

Abhimanyu Kumar, Nov 29 2020

Keywords

Comments

For a prime p, the degree of insulation is formally defined as D(p) = Max_{m=1..oo} U where the set U = {m: A000720(p+m) - A000720(p-m) = 1}.
This sequence is employed in defining insulated primes and highly insulated primes.

Crossrefs

Cf. A000040, A000720, A339148 (insulated primes), A339188 (highly insulated primes).
Related sequences: A046929.

Programs

  • Maple
    f:= p -> min(nextprime(p)-p-1, p-prevprime(p)): f(2):= 0:
    map(f@ithprime, [$1..100]); # Robert Israel, Dec 24 2020
  • Mathematica
    {0}~Join~Array[Min[NextPrime[# + 1] - # - 1, # - NextPrime[# - 1, -1]] &@ Prime@ # &, 91, 2] (* Michael De Vlieger, Dec 11 2020 *)
  • PARI
    D(p)={min(nextprime(p+1)-p-1, p-precprime(p-1))}
    forprime(p=2, 1000, print1(D(p), ", "))

A339188 Highly insulated primes (see Comments for definition).

Original entry on oeis.org

23, 53, 89, 211, 293, 409, 479, 631, 797, 839, 919, 1039, 1259, 1409, 1471, 1511, 1637, 1709, 1847, 1889, 2039, 2099, 2179, 2503, 2579, 2633, 2777, 2819, 2939, 3011, 3049, 3137, 3229, 3271, 3433, 3499, 3593, 3659, 3709, 3779, 3967, 4111, 4177, 4253, 4327, 4409, 4493, 4621, 4703, 4831
Offset: 1

Author

Abhimanyu Kumar, Nov 27 2020

Keywords

Comments

Let degree of insulation D(p) for a prime p be defined as the largest m such that the prime between p-m and p+m is p only. Then the n-th insulated prime is said to be highly insulated if and only if D(A339148(n)) > D(A339148(n+1)) and D(A339148(n)) > D(A339148(n-1)).

Examples

			For the triplet (13,23,37) of insulated primes, the values of degree of insulation are D(13)=2, D(23)=4, and D(37)=3. Hence, 23 is the highly insulated prime.
		

Crossrefs

Cf. A000040, A339148 (insulated primes).

Programs

  • Mathematica
    Block[{s = {0}~Join~Array[Min[NextPrime[# + 1] - # - 1, # - NextPrime[# - 1, -1]] &@ Prime@ # &, 660, 2], t}, t = Array[If[#1 < #2 > #3, #4, Nothing] & @@ Append[s[[# - 1 ;; # + 1]], #] &, Length@ s - 2, 2]; Array[If[s[[#1]] < s[[#2]] > s[[#3]], #4, Nothing] & @@ Append[t[[# - 1 ;; # + 1]], Prime@ t[[#]]] &, Length@ t - 2, 2] ] (* Michael De Vlieger, Dec 11 2020 *)
  • PARI
    A339188(n) = { \\ Return the list of the first n highly insulated primes
      my( HighInsulated=List([]), D(p)=min(nextprime(p+1)-p-1, p-precprime(p-1)); );
      my( Dpred_ins=D(7), Pcur_ins=13, Dcur_ins=D(Pcur_ins) );
      local( Dpred=D(Pcur_ins), p=nextprime(Pcur_ins+1), Dp=D(p), Pnext=nextprime(p+1), Dnext=D(Pnext) );
      my(SearchNextInsulated() =
           until(Dp > max(Dpred,Dnext),
             Dpred = Dp; p = Pnext;  Dp = Dnext;
             Pnext = nextprime(p+1); Dnext = D(Pnext);
           );
         \\ At this point p is the first insulated prime > Dcur_ins
        );
      while(#HighInsulated max(Dpred_ins,Dp),
          Dpred_ins = Dcur_ins; Pcur_ins  = p; Dcur_ins  = Dp;
          SearchNextInsulated();
        );
        listput(HighInsulated,Pcur_ins);
      );
      return(HighInsulated);
    } \\ François Marques, Dec 01 2020

A339148 Insulated primes (see Comments for definition).

Original entry on oeis.org

7, 13, 23, 37, 53, 67, 89, 103, 113, 131, 139, 157, 173, 181, 193, 211, 233, 277, 293, 337, 359, 389, 409, 421, 449, 479, 491, 509, 547, 577, 607, 631, 653, 691, 709, 751, 761, 797, 811, 823, 839, 863, 887, 919, 953, 983
Offset: 1

Author

Abhimanyu Kumar, Nov 25 2020

Keywords

Comments

Let the degree of insulation D(p) for a prime p be defined to be the largest m such that the only prime between p-m and p+m inclusive is p. Then the n-th prime is said to be insulated if and only if D(prime(n)) > D(prime(n+1)) and D(prime(n)) > D(prime(n-1)).

Examples

			For the prime triplet (19,23,29), we have D(19)=2, D(23)=4, and D(29)=1. Hence, 23 is an insulated prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[2, 166], And[#2 > #1, #2 > #3] & @@ Map[Min[NextPrime[# + 1] - # - 1, # - NextPrime[# - 1, -1]] &, {NextPrime[# + 1], #, NextPrime[# - 1, -1]}] &] (* Michael De Vlieger, Mar 17 2021 *)
  • PARI
    D(p)={min(nextprime(p+1)-p-1, p-precprime(p-1))}
    ok(p)={my(d=D(p)); d>D(nextprime(p+1)) && d>D(precprime(p-1))}
    forprime(p=3, 1000, if(ok(p), print1(p, ", "))) \\ Andrew Howroyd, Nov 25 2020

Formula

a(n) ~ 19.18*n^1.093 (heuristically accurate fit for n up to one million).
a(n) ~ c*n^(1+epsilon) (conjectured for some constant c,epsilon as n->oo).

A339095 Triangle read by rows: T(n,k) is the number of partitions of n with product of parts equal to k, 1 <= k <= A000792(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 0, 3, 0, 0, 1, 3, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 0, 3, 0, 1, 1, 3, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1
Offset: 1

Author

Abhimanyu Kumar, Nov 23 2020

Keywords

Comments

The product of the parts of a partition is called its norm.

Examples

			For n=6 the partitions and their counts for each norm are given in the table below.
  Relevant partition(s)  | Norm | Count
  1+1+1+1+1+1+1          | 1    | 1
  2+1+1+1+1              | 2    | 1
  3+1+1+1                | 3    | 1
  4+1+1, 2+2+1+1         | 4    | 2
  5+1                    | 5    | 1
  6, 3+2+1               | 6    | 2
  4+2, 2+2+2             | 8    | 2
  3+3                    | 9    | 1
The number of partitions of 6 with norm value 4 are 2, expressed as T(6,4)=2. Similarly, T(6,7)=0 because there is no partition of 6 with norm 7.
So the 6th row is 1, 1, 1, 2, 1, 2, 0, 2, 1.
First few rows of the array are:
  1;
  1, 1;
  1, 1, 1;
  1, 1, 1, 2;
  1, 1, 1, 2, 1, 1;
  1, 1, 1, 2, 1, 2, 0, 2, 1;
  1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 2;
  1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 0, 3, 0, 0, 1, 3, 0, 1;
  ...
		

References

  • Abhimanyu Kumar and Meenakshi Rana, On the treatment of partitions as factorization and further analysis, Journal of the Ramanujan Mathematical Society 35(3), 263-276 (2020).

Crossrefs

Cf. A000041 (row sums), A000792 (row lengths), A001055, A118851, A212721.

Programs

  • PARI
    row(n) = {my(list = List()); forpart(p=n, listput(list, vecprod(Vec(p)));); my(vlist = Vec(list)); my(v = vector(vecmax(vlist))); for (i=1, #vlist, v[vlist[i]]++); v;} \\ Michel Marcus, Nov 26 2020

Formula

Let the number of partitions of n having the norm value k refer to the norm counting function T(n,k). The following properties hold true:
Max_{n=1..oo} T(n,k) = A001055(k).
Sum_{k=1..A000792(n)} T(n,k) = A000041(n).
Sum_{n>=1} T(n+1,k) - T(n,k) = A001055(k) - 1.
G.f.: Sum_{n>=0} Sum_{k>=1} ((q^n)/(k^s))*T(n,k) = Product_{m>=1}(1-((q^m)/(m^s)))^(-1).
n*Sum_{k=1..A000792(n)} T(n,k) = Sum_{m=1..n} (Sum_{k=1..A000792(n-m)} T(n-m,i)*k^(-s))*(Sum_{d|m} (d/m)^(d*s-1))

Extensions

More terms from Michel Marcus, Nov 26 2020