cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339158 Number of essentially parallel achiral series-parallel networks with n elements.

Original entry on oeis.org

1, 1, 2, 4, 8, 18, 37, 84, 180, 413, 902, 2084, 4628, 10726, 24128, 56085, 127421, 296955, 680092, 1588665, 3662439, 8574262, 19875081, 46628789, 108584460, 255264307, 596774173, 1405626896, 3297314994, 7780687159, 18305763571, 43271547808, 102069399803
Offset: 1

Views

Author

Andrew Howroyd, Nov 27 2020

Keywords

Comments

A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. a(n) is the number of parallel configurations with n unit elements that are invariant under the reversal of all contained series configurations.

Examples

			In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (o|o).
a(3) = 2: (o|oo).
a(4) = 4: (o|ooo), (oo|oo), (o|o|oo), (o|o|o|o).
a(5) = 8: (o|oooo), (o|(o|o)(o|o)), (o|o(o|o)o), (oo|ooo), (o|o|ooo), (o|oo|oo), (o|o|o|oo), (o|o|o|o|o).
a(6) = 16 includes (o(o|o)|(o|o)o) which is the first example of a network that is achiral but does not have reflective symmetry when embedded in the plane as shown below (edges correspond to elements):
               A
             /   \\
            o      o   --- No reflective symmetry ---
             \\  /
               Z
		

Crossrefs

Cf. A003430, A007454 (oriented), A339157, A339159, A339224 (unoriented).

Programs

  • PARI
    \\ here B(n) gives A003430 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
    seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, my(t=x + q*(1 + p)); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+O(x*x^n))}

Formula

G.f.: x - S(x) - 1 + exp(Sum_{k>=1} (S(x^k) + (R(x^(2*k)) - S(x^(2*k)))/2)/k) where S(x) is the g.f. of A339157 and R(x) is the g.f. of A007453.