A339169 Number of compositions (ordered partitions) of n into distinct parts, the least being 6.
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 14, 14, 20, 20, 26, 26, 32, 56, 62, 86, 116, 140, 170, 218, 248, 296, 350, 518, 572, 764, 938, 1250, 1448, 1880, 2198, 2774, 3212, 3908, 5210, 6146, 7568, 9368, 11750, 14510, 17756, 21476, 26402, 31826, 38432, 45536
Offset: 0
Keywords
Examples
a(21) = 8 because we have [15, 6], [8, 7, 6], [8, 6, 7], [7, 8, 6], [7, 6, 8], [6, 15], [6, 8, 7] and [6, 7, 8].
Crossrefs
Programs
-
Mathematica
nmax = 62; CoefficientList[Series[Sum[k! x^(k (k + 11)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=1} k! * x^(k*(k + 11)/2) / Product_{j=1..k-1} (1 - x^j).