A339170 Number of compositions (ordered partitions) of n into distinct parts, the least being 7.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 14, 14, 20, 20, 26, 26, 32, 32, 62, 62, 92, 116, 146, 170, 224, 248, 302, 350, 404, 572, 650, 818, 1016, 1328, 1526, 1958, 2300, 2852, 3314, 4010, 4592, 6248, 6974, 8750, 10436, 13196, 15722, 19442, 22952
Offset: 0
Keywords
Examples
a(24) = 8 because we have [17, 7], [9, 8, 7], [9, 7, 8], [8, 9, 7], [8, 7, 9], [7, 17], [7, 9, 8] and [7, 8, 9].
Crossrefs
Programs
-
Mathematica
nmax = 64; CoefficientList[Series[Sum[k! x^(k (k + 13)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=1} k! * x^(k*(k + 13)/2) / Product_{j=1..k-1} (1 - x^j).