A339171 Number of compositions (ordered partitions) of n into distinct parts, the least being 8.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 14, 14, 20, 20, 26, 26, 32, 32, 38, 62, 68, 92, 122, 146, 176, 224, 254, 302, 356, 404, 458, 650, 704, 896, 1094, 1406, 1604, 2060, 2378, 2954, 3416, 4112, 4694, 5654, 7076, 8156, 9842
Offset: 0
Keywords
Examples
a(27) = 8 because we have [19, 8], [10, 9, 8], [10, 8, 9], [9, 10, 8], [9, 8, 10], [8, 19], [8, 10, 9] and [8, 9, 10].
Crossrefs
Programs
-
Mathematica
nmax = 65; CoefficientList[Series[Sum[k! x^(k (k + 15)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=1} k! * x^(k*(k + 15)/2) / Product_{j=1..k-1} (1 - x^j).