cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A339269 a(n) is the least number that is the product of n primes (not necessarily distinct) and is the sum of n consecutive primes, or 0 if there are none.

Original entry on oeis.org

2, 0, 425, 36, 243, 756, 29889, 4704, 207765, 8448, 4465125, 108864, 13640319, 1022976, 146146275, 3010560, 6500054871, 4259840, 60767621145, 36864000, 454444233597, 167215104, 8664659236485, 796262400, 49362406764957, 7935623168, 2310430513712625, 4160749568, 4216955409197811, 28538044416
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 29 2020

Keywords

Comments

Conjecture: a(n) > 0 for every n > 2.
If n > 2 is odd, the sum of n consecutive odd primes is odd, so (if nonzero) a(n) >= 3^n.

Examples

			a(3)=425 because 425 = 5^2*7 is the product of three primes and 425 = 137+139+149 is the sum of three consecutive primes, and no smaller number has this property.
		

Crossrefs

Programs

  • Maple
    sumofconsecprimes:= proc(x, n)
      local P, k, p, q, t;
      P:= nextprime(floor(x/n));
      p:= P; q:= P;
      for k from 1 to n-1 do
        if k::even or q = 2 then p:= nextprime(p); P:= P, p;
        else q:= prevprime(q); P:= q, P;
        fi
      od;
      P:= [P];
      t:= convert(P, `+`);
      if t = x then return P fi;
      if t > x then
        while t > x do
          if q = 2 then return false fi;
          q:= prevprime(q);
          t:= t + q - p;
          P:= [q, op(P[1..-2])];
          p:= P[-1];
          if t = x then return P fi;
        od
      else
        while t < x do
          p:= nextprime(p);
          t:= t + p - q;
          P:= [op(P[2..-1]), p];
          q:= P[1];
          if t = x then return P fi;
        od
      fi;
      false
    end proc:
    children:= proc(r) local L, x, p, q, t, R;
      x:= r[1];
      L:= r[2];
      t:= L[-1];
      p:= t[1]; q:= nextprime(p);
      if t[2]=1 then t:= [q, 1];
      else t:= [p, t[2]-1], [q, 1]
      fi;
      R:= [x*q/p, [op(L[1..-2]), t]];
      if nops(L) >= 2 then
        p:= L[-2][1];
        q:= L[-1][1];
        if L[-2][2]=1 then t:= [q, L[-1][2]+1]
        else t:= [p, L[-2][2]-1], [q, L[-1][2]+1]
        fi;
        R:= R, [x*q/p, [op(L[1..-3]), t]]
      fi;
      [R]
    end proc:
    f:= proc(n) local Q, t, x, v;
          uses priqueue;
          initialize(Q);
          if n::even then insert([-2^n, [[2, n]]], Q)
          else insert([-3^n, [[3, n]]], Q)
          fi;
          do
            t:= extract(Q);
            x:= -t[1];
            v:= sumofconsecprimes(x, n);
            if v <> false then return x fi;
            for t in children(t) do insert(t, Q) od;
          od
       end proc:
    f(1):= 2:
    f(2):= 0:
    map(f, [$1..34]);

Formula

a(n) = A143121(A339185(n)+n, A339185(n)).
Showing 1-1 of 1 results.