cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A339185 a(n) is the least prime p such that the sum of n consecutive primes starting with p has exactly n prime factors, counted with multiplicity, or 0 if no such p exists.

Original entry on oeis.org

2, 0, 137, 5, 41, 109, 4253, 569, 23057, 821, 405863, 9013, 1049173, 73009, 9742969, 188017, 382355863, 236527, 3198295691, 1843111, 21640201361, 7600499, 376724314301, 33177461, 1974496270177, 305216017, 85571500507397, 148597987, 145412255489161, 951267841, 2609815945304401, 1140850357, 24575914221842531
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 26 2020

Keywords

Comments

Conjecture: Such p exists for every n > 2.

Examples

			a(3)=137 because the sum of 3 consecutive primes starting with 137 is 137+139+149=425=5^2*7 is the product of 3 primes counting multiplicity, and 137 is the least prime with this property.
		

Crossrefs

Programs

  • Maple
    sumofconsecprimes:= proc(x,n)
      local P,k,p,q,t;
      P:= nextprime(floor(x/n));
      p:= P; q:= P;
      for k from 1 to n-1 do
        if k::even or q = 2 then p:= nextprime(p); P:= P,p;
        else q:= prevprime(q); P:= q,P;
        fi
      od;
      P:= [P];
      t:= convert(P,`+`);
      if t = x then return P fi;
      if t > x then
        while t > x do
          if q = 2 then return false fi;
          q:= prevprime(q);
          t:= t + q - p;
          P:= [q, op(P[1..-2])];
          p:= P[-1];
          if t = x then return P fi;
        od
      else
        while t < x do
          p:= nextprime(p);
          t:= t + p - q;
          P:= [op(P[2..-1]),p];
          q:= P[1];
          if t = x then return P fi;
        od
      fi;
      false
    end proc:
    children:= proc(r) local L,x,p,q,t,R;
      x:= r[1];
      L:= r[2];
      t:= L[-1];
      p:= t[1]; q:= nextprime(p);
      if t[2]=1 then t:= [q,1];
      else t:= [p,t[2]-1],[q,1]
      fi;
      R:= [x*q/p,[op(L[1..-2]),t]];
      if nops(L) >= 2 then
        p:= L[-2][1];
        q:= L[-1][1];
        if L[-2][2]=1 then t:= [q,L[-1][2]+1]
        else t:= [p,L[-2][2]-1],[q,L[-1][2]+1]
        fi;
        R:= R, [x*q/p, [op(L[1..-3]),t]]
      fi;
      [R]
    end proc:
    f:= proc(n) local Q,t,x,v;
          uses priqueue;
          initialize(Q);
          if n::even then insert([-2^n,[[2,n]]],Q)
          else insert([-3^n,[[3,n]]],Q)
          fi;
          do
            t:= extract(Q);
            x:= -t[1];
            v:= sumofconsecprimes(x,n);
            if v <> false then return v[1] fi;
            for t in children(t) do insert(t,Q) od;
          od
       end proc:
    f(1):= 2:
    f(2):= 0:
    map(f, [$1..34]);

Formula

A339269(n) = A143121(a(n)+n, a(n)).
Showing 1-1 of 1 results.