cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339186 Total number of nonzero squares in the partitions of n into 2 parts.

Original entry on oeis.org

0, 0, 2, 1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Wesley Ivan Hurt, Nov 26 2020

Keywords

Examples

			a(8) = 3; The partitions of 8 into two parts are (7,1), (6,2), (5,3) and (4,4). There are 3 total nonzero squares among the parts (namely 1, 4 and 4 ), so a(8) = 3.
a(9) = 2; The partitions of 9 into two parts are (8,1), (7,2), (6,3) and (5,4). Since 1 and 4 are the only nonzero squares among all parts, a(9) = 2.
		

Crossrefs

Cf. A339183 (number of smaller parts), A339184 (number of larger parts).

Programs

  • Mathematica
    Table[Sum[Floor[Sqrt[i]] - Floor[Sqrt[i - 1]] + Floor[Sqrt[n - i]] - Floor[Sqrt[n - i - 1]], {i, Floor[n/2]}], {n, 0, 100}]

Formula

a(n) = A339184(n) + A339183(n).