cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339188 Highly insulated primes (see Comments for definition).

Original entry on oeis.org

23, 53, 89, 211, 293, 409, 479, 631, 797, 839, 919, 1039, 1259, 1409, 1471, 1511, 1637, 1709, 1847, 1889, 2039, 2099, 2179, 2503, 2579, 2633, 2777, 2819, 2939, 3011, 3049, 3137, 3229, 3271, 3433, 3499, 3593, 3659, 3709, 3779, 3967, 4111, 4177, 4253, 4327, 4409, 4493, 4621, 4703, 4831
Offset: 1

Views

Author

Abhimanyu Kumar, Nov 27 2020

Keywords

Comments

Let degree of insulation D(p) for a prime p be defined as the largest m such that the prime between p-m and p+m is p only. Then the n-th insulated prime is said to be highly insulated if and only if D(A339148(n)) > D(A339148(n+1)) and D(A339148(n)) > D(A339148(n-1)).

Examples

			For the triplet (13,23,37) of insulated primes, the values of degree of insulation are D(13)=2, D(23)=4, and D(37)=3. Hence, 23 is the highly insulated prime.
		

Crossrefs

Cf. A000040, A339148 (insulated primes).

Programs

  • Mathematica
    Block[{s = {0}~Join~Array[Min[NextPrime[# + 1] - # - 1, # - NextPrime[# - 1, -1]] &@ Prime@ # &, 660, 2], t}, t = Array[If[#1 < #2 > #3, #4, Nothing] & @@ Append[s[[# - 1 ;; # + 1]], #] &, Length@ s - 2, 2]; Array[If[s[[#1]] < s[[#2]] > s[[#3]], #4, Nothing] & @@ Append[t[[# - 1 ;; # + 1]], Prime@ t[[#]]] &, Length@ t - 2, 2] ] (* Michael De Vlieger, Dec 11 2020 *)
  • PARI
    A339188(n) = { \\ Return the list of the first n highly insulated primes
      my( HighInsulated=List([]), D(p)=min(nextprime(p+1)-p-1, p-precprime(p-1)); );
      my( Dpred_ins=D(7), Pcur_ins=13, Dcur_ins=D(Pcur_ins) );
      local( Dpred=D(Pcur_ins), p=nextprime(Pcur_ins+1), Dp=D(p), Pnext=nextprime(p+1), Dnext=D(Pnext) );
      my(SearchNextInsulated() =
           until(Dp > max(Dpred,Dnext),
             Dpred = Dp; p = Pnext;  Dp = Dnext;
             Pnext = nextprime(p+1); Dnext = D(Pnext);
           );
         \\ At this point p is the first insulated prime > Dcur_ins
        );
      while(#HighInsulated max(Dpred_ins,Dp),
          Dpred_ins = Dcur_ins; Pcur_ins  = p; Dcur_ins  = Dp;
          SearchNextInsulated();
        );
        listput(HighInsulated,Pcur_ins);
      );
      return(HighInsulated);
    } \\ François Marques, Dec 01 2020