A339193 Matula-Goebel numbers of unlabeled binary rooted semi-identity trees.
1, 4, 14, 86, 301, 886, 3101, 3986, 13766, 13951, 19049, 48181, 57026, 75266, 85699, 199591, 263431, 295969, 298154, 302426, 426058, 882899
Offset: 1
Keywords
Examples
The sequence of terms together with the corresponding unlabeled rooted trees begins: 1: o 4: (oo) 14: (o(oo)) 86: (o(o(oo))) 301: ((oo)(o(oo))) 886: (o(o(o(oo)))) 3101: ((oo)(o(o(oo)))) 3986: (o((oo)(o(oo)))) 13766: (o(o(o(o(oo))))) 13951: ((oo)((oo)(o(oo)))) 19049: ((o(oo))(o(o(oo)))) 48181: ((oo)(o(o(o(oo))))) 57026: (o((oo)(o(o(oo))))) 75266: (o(o((oo)(o(oo))))) 85699: ((o(oo))((oo)(o(oo))))
Links
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; mgbiQ[n_]:=Or[n==1,n==4,SquareFreeQ[n]&&PrimeOmega[n]==2&&And@@mgbiQ/@primeMS[n]]; Select[Range[1000],mgbiQ]
Comments