cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339198 Number of (undirected) cycles on the n X 4 king graph.

Original entry on oeis.org

85, 3459, 136597, 4847163, 171903334, 6109759868, 217211571195, 7721452793328, 274480808918598, 9757216290644264, 346848710800215246, 12329747938579785459, 438296805656767232863, 15580536695961884270466, 553855562644922140772689, 19688409342958501534182423
Offset: 2

Views

Author

Seiichi Manyama, Nov 27 2020

Keywords

Crossrefs

Column 4 of A339098.
Cf. A339201.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339098(n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    def A339198(n):
        return A339098(n, 4)
    print([A339198(n) for n in range(2, 20)])

Formula

Empirical g.f.: x^2 * (-336*x^16 - 360*x^15 + 187*x^14 - 4505*x^13 + 12123*x^12 + 14959*x^11 - 65728*x^10 + 50979*x^9 - 52680*x^8 + 26849*x^7 + 179877*x^6 + 22927*x^5 - 222548*x^4 + 1318*x^3 + 14878*x^2 + 399*x + 85) / ((x-1)^2 * (112*x^16 + 8*x^15 - 217*x^14 + 904*x^13 - 2866*x^12 + 1756*x^11 + 7818*x^10 - 22167*x^9 + 45698*x^8 - 61238*x^7 + 8041*x^6 + 31909*x^5 - 5819*x^4 - 538*x^3 - 36*x^2 - 34*x + 1)). - Vaclav Kotesovec, Dec 09 2020