cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339201 Number of (undirected) Hamiltonian cycles on the n X 4 king graph.

Original entry on oeis.org

8, 120, 2830, 50354, 1003218, 19380610, 378005474, 7348400816, 143013145124, 2782280184314, 54134923232608, 1053263634537410, 20492847566047336, 398717839924458408, 7757640305938339162, 150936198726479633524, 2936684182444832427774, 57137476790772843457886
Offset: 2

Views

Author

Seiichi Manyama, Nov 27 2020

Keywords

Crossrefs

Column 4 of A339190.
Cf. A339198.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339190(n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    def A339201(n):
        return A339190(n, 4)
    print([A339201(n) for n in range(2, 20)])

Formula

Empirical g.f.: 2*x^2 * (56*x^16 + 53*x^15 + 413*x^14 - 943*x^13 - 635*x^12 - 700*x^11 + 2283*x^10 + 455*x^9 + 3044*x^8 - 4856*x^7 - 4293*x^6 + 6475*x^5 + 719*x^4 - 1386*x^3 + 143*x^2 - 8*x + 4) / (112*x^16 + 106*x^15 + 964*x^14 - 1933*x^13 + 357*x^12 - 3503*x^11 + 3756*x^10 - 828*x^9 + 12662*x^8 - 18201*x^7 - 2441*x^6 + 5486*x^5 - 704*x^4 + 318*x^3 - 63*x^2 - 17*x + 1). - Vaclav Kotesovec, Dec 09 2020