A339225 Number of unoriented series-parallel networks with n elements.
1, 2, 4, 11, 30, 98, 328, 1193, 4459, 17287, 68283, 274726, 1118960, 4607578, 19135274, 80063095, 337104367, 1427274619, 6072510001, 25949049372, 111319539096, 479243000380, 2069825207344, 8965693829582, 38940393808337, 169546919220357, 739895248735963
Offset: 1
Keywords
Examples
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'. a(1) = 1: (o). a(2) = 2: (oo), (o|o). a(3) = 4: (ooo), (o(o|o)), (o|o|o), (o|oo). a(4) = 11: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)).
Programs
-
PARI
\\ here B(n) gives A003430 as a power series. EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p} seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2), t=p); for(n=1, n\2, t=x + q*(1 + p); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+t-x+B(n))/2}
Comments