cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A333650 Triangle read by rows: T(n,k) gives the number of domino towers of height k consisting of n bricks.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 7, 11, 8, 1, 12, 24, 28, 16, 1, 20, 52, 70, 68, 32, 1, 33, 110, 168, 193, 160, 64, 1, 54, 228, 401, 497, 510, 368, 128, 1, 88, 467, 944, 1257, 1412, 1304, 832, 256, 1, 143, 949, 2187, 3172, 3736, 3879, 3248, 1856, 512
Offset: 1

Views

Author

Peter Kagey, Mar 31 2020

Keywords

Comments

The towers must have a contiguous base of bricks, and each brick must be at least half supported below by another brick. The stacks do not need to be stable.
Conjecture: For n > 1, T(n,2) = A000071(n+2).
A038622(n-1,k) appears to give the number of domino towers consisting of n bricks with a base of k bricks.
Conjecture: T(n,n-1) = A339252(n-2). - Peter Kagey, Nov 21 2020
Conjecture: T(n,n-2) = A339254(n-3). - Peter Luschny, Nov 29 2020
Conjecture: T(n,n-3) = A339029(n-4). - Peter Luschny, Dec 01 2020
From Peter Luschny, Dec 01 2020: (Start)
The above conjectures can be summarized as follows:
T(2*n + k, n + k) = d_{n}(n + k - 1) for k >= 1 and 0 <= n <= 3, where
d_{0}(m) = 2^(m-1)*2;
d_{1}(m) = 2^(m-3)*(10 + 6*m);
d_{2}(m) = 2^(m-5)*(70 + 43*m + 9*m^2);
d_{3}(m) = 2^(m-7)*(588 + 367*m + 84*m^2 + 9*m^3). (End)

Examples

			Table begins:
  n\k| 1   2    3    4    5    6     7     8    9   10   11
  ---+-----------------------------------------------------
   1 | 1
   2 | 1   2
   3 | 1   4    4
   4 | 1   7   11    8
   5 | 1  12   24   28   16
   6 | 1  20   52   70   68   32
   7 | 1  33  110  168  193  160    64
   8 | 1  54  228  401  497  510   368   128
   9 | 1  88  467  944 1257 1412  1304   832  256
  10 | 1 143  949 2187 3172 3736  3879  3248 1856  512
  11 | 1 232 1916 5010 7946 9778 10766 10360 7920 4096 1024
.
T(3,2) = 4 because there are four domino towers of height two consisting of three bricks:
+-------+-------+      +-------+                  +-------+
|       |       |      |       |                  |       |
+---+---+---+---+, +---+---+---+---+, +-------+---+---+---+, and
    |       |      |       |       |  |       |       |
    +-------+      +-------+-------+  +-------+-------+
+-------+
|       |
+---+---+---+-------+.
    |       |       |
    +-------+-------+
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 25-27.

Crossrefs

Formula

Row sums are given by A000244(n-1) = 3^(n-1).
T(n,1) = 1.
T(n,n) = 2^(n-1).

A339029 Expansion of (1 + 4*x - 20*x^2 + 8*x^3 + 33*x^4 - 4*x^5 - 33*x^6)/(1 - 2*x)^4.

Original entry on oeis.org

1, 12, 52, 168, 497, 1412, 3879, 10360, 27016, 69024, 173264, 428288, 1044480, 2516992, 6001408, 14174208, 33191936, 77127680, 177967104, 408027136, 930021376, 2108424192, 4756275200, 10680270848, 23880794112, 53185871872, 118016180224, 260969594880, 575223627776
Offset: 0

Views

Author

Peter Luschny, Dec 01 2020

Keywords

Crossrefs

Cf. A339252 (k=2), A339254 (k=3), A333650.

Programs

  • Maple
    gf := (1 + 4*x - 20*x^2 + 8*x^3 + 33*x^4 - 4*x^5 - 33*x^6)/(1 - 2*x)^4:
    ser := series(gf, x, 32): seq(coeff(ser, x, n), n = 0..28);
  • Mathematica
    LinearRecurrence[{8, -24, 32, -16}, {1, 12, 52, 168, 497, 1412, 3879}, 30] (* Paolo Xausa, Feb 01 2024 *)

Formula

a(n) = 2^(n-7)*(588 + 367*n + 84*n^2 + 9*n^3) for n >= 3.
Showing 1-2 of 2 results.