cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339254 a(n) = 6*a(n - 1) - 12*a(n - 2) + 8*a(n - 3) for n >= 5, a(0) = 1, a(1) = 7, a(2) = 24, a(3) = 70, a(4) = 193.

Original entry on oeis.org

1, 7, 24, 70, 193, 510, 1304, 3248, 7920, 18976, 44800, 104448, 240896, 550400, 1247232, 2805760, 6270976, 13934592, 30801920, 67764224, 148439040, 323878912, 704118784, 1525678080, 3295674368, 7098859520, 15250489344, 32682016768, 69877104640, 149082341376
Offset: 0

Views

Author

Peter Luschny, Nov 29 2020

Keywords

Programs

  • Maple
    a := proc(n) option remember; if n < 5 then return [1, 7, 24, 70, 193][n + 1] fi;
    6*a(n - 1) - 12*a(n - 2) + 8*a(n - 3) end: seq(a(n), n = 0..29);
  • Mathematica
    CoefficientList[Series[(5 x^4 + 2 x^3 - 6 x^2 + x + 1)/(1 - 2 x)^3, {x,0,29}], x]

Formula

a(n) = [x^n] (5*x^4 + 2*x^3 - 6*x^2 + x + 1) / (1 - 2*x)^3.
a(n) = n! [x^n] (exp(2*x)*(18*x^2 + 52*x + 35) - 10*x - 19)/16.
a(n) = 2^(n-5)*(70 + 43*n + 9*n^2) for n >= 2. - Stefano Spezia, Nov 29 2020