A339257 Number of spanning trees in the n X 5 king graph.
1, 27648, 146356224, 698512774464, 3271331573452800, 15258885095892902976, 71111090441547013886784, 331335100372867196224868352, 1543757070688065237574186369344, 7192607774929149127350811889484864, 33511424900308657559195109303117533184, 156134620449573478209362729027690283037248
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_nXk_king_graph(n, k): grids = [] for i in range(1, k + 1): for j in range(1, n): grids.append((i + (j - 1) * k, i + j * k)) if i < k: grids.append((i + (j - 1) * k, i + j * k + 1)) if i > 1: grids.append((i + (j - 1) * k, i + j * k - 1)) for i in range(1, k * n, k): for j in range(1, k): grids.append((i + j - 1, i + j)) return grids def A338029(n, k): if n == 1 or k == 1: return 1 universe = make_nXk_king_graph(n, k) GraphSet.set_universe(universe) spanning_trees = GraphSet.trees(is_spanning=True) return spanning_trees.len() def A339257(n): return A338029(n, 5) print([A339257(n) for n in range(1, 15)])
Formula
Empirical g.f.: -x*(218700000000*x^8 - 2040471000000*x^7 + 538526880000*x^6 + 311791396500*x^5 - 17462695797*x^4 - 80280747*x^3 + 10513308*x^2 - 21759*x - 1) / (656100000000*x^8 - 4293081000000*x^7 + 4819127400000*x^6 - 930215250900*x^5 + 51621632181*x^4 - 1033572501*x^3 + 5949540*x^2 - 5889*x + 1). - Vaclav Kotesovec, Dec 09 2020