A339260 Decimal expansion of the maximum possible volume of a polyhedron with 8 vertices inscribed in the unit sphere.
1, 8, 1, 5, 7, 1, 6, 1, 0, 4, 2, 2, 4, 4, 2, 0, 3, 9, 7, 5, 0, 8, 4, 9, 4, 9, 3, 0, 6, 3, 3, 1, 7, 7, 7, 8, 9, 0, 1, 3, 1, 0, 0, 9, 5, 5, 2, 7, 5, 4, 3, 9, 8, 3, 7, 6, 6, 6, 3, 7, 2, 9, 1, 6, 9, 1, 8, 4, 8, 9, 9, 3, 7, 0, 0, 0, 2, 8, 9, 3, 8, 6, 5, 2, 7, 0, 3
Offset: 1
Examples
1.8157161042244203975084949306331777890131009552754398376663729...
Links
- Joel D. Berman and Kitt Hanes, Volumes of Polyhedra Inscribed in the Unit Sphere in E3. Mathematische Annalen 188, 78-84 (1970).
- Donald W. Grace, Search For Largest Polyhedra, Mathematics of Computation 17 (1963), pp. 197-199.
- Matt Parker, The search for the biggest shape in the universe, YouTube video, 2024.
- Hugo Pfoertner, Visualization of Polyhedron, (1999).
- Hugo Pfoertner, Number of edges incident with the 8 vertices, video (2021).
Crossrefs
Programs
-
Mathematica
RealDigits[Sqrt[(475 + 29*Sqrt[145])/250], 10, 120][[1]] (* Amiram Eldar, Jun 01 2023 *)
-
PARI
sqrt((475+29*sqrt(145))/250)
Formula
Equals sqrt((475 + 29*sqrt(145))/250).
Comments