A339264 Decimal expansion of (63/25) * (17+15*sqrt(5)) / (7+15*sqrt(5)): an approximation for Pi from Srinivasa Ramanujan.
3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 8, 0, 5, 6, 8, 8, 2, 0, 1, 8, 9, 8, 3, 9, 0, 0, 0, 6, 3, 0, 1, 5, 0, 7, 8, 2, 2, 4, 8, 7, 5, 0, 3, 4, 7, 5, 7, 7, 4, 3, 0, 9, 2, 2, 2, 8, 3, 8, 6, 6, 0, 9, 2, 8, 2, 2, 0, 4, 2, 4, 6, 3, 7, 4, 4, 5, 2, 5, 1, 1, 6, 3, 5, 4, 8, 9, 2, 9, 9, 6
Offset: 1
Examples
3.141592653805688201898390006301507822487503475774...
References
- Jörg Arndt and Christoph Haenel, Pi Unleashed, Springer-Verlag, 2006, retrieved Jun 05 2013, (4.17) page 57.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 3.14159 (Pi), page 36.
Links
- S. Ramanujan, Modular equations and approximations to Pi, Quarterly Journal of Mathematics, XLV, 1914, p. 43.
- Index entries for algebraic numbers, degree 2
Programs
-
Maple
evalf((63/25)*(17+15*sqrt(5))/(7+15*sqrt(5)),100);
-
Mathematica
RealDigits[(63/25)*(17 + 15*Sqrt[5])/(7 + 15*Sqrt[5]), 10, 100][[1]] (* Amiram Eldar, Nov 29 2020 *)
-
PARI
(63/13450) * (503+75*sqrt(5)) \\ Michel Marcus, Nov 29 2020
Formula
Equals (63/13450) * (503+75*sqrt(5)).
Equals the root of 829521 - 792225*x + 168125*x^2 which is > 3. - Peter Luschny, Nov 29 2020
Comments