A339275 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists the terms of A040000: 1, 2, 2, 2, ... interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.
1, 2, 2, 1, 2, 0, 2, 2, 2, 0, 1, 2, 2, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 1, 2, 2, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 2, 0, 0, 2, 2, 2, 2, 0, 1, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 2, 2, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 2, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 2
Offset: 1
Examples
Triangle begins (rows 1..28): 1; 2; 2, 1; 2, 0; 2, 2; 2, 0, 1; 2, 2, 0; 2, 0, 0; 2, 2, 2; 2, 0, 0, 1; 2, 2, 0, 0; 2, 0, 2, 0; 2, 2, 0, 0; 2, 0, 0, 2; 2, 2, 2, 0, 1; 2, 0, 0, 0, 0; 2, 2, 0, 0, 0; 2, 0, 2, 2, 0; 2, 2, 0, 0, 0; 2, 0, 0, 0, 2; 2, 2, 2, 0, 0, 1; 2, 0, 0, 2, 0, 0; 2, 2, 0, 0, 0, 0; 2, 0, 2, 0, 0, 0; 2, 2, 0, 0, 2, 0; 2, 0, 0, 2, 0, 0; 2, 2, 2, 0, 0, 2; 2, 0, 0, 0, 0, 0, 1; ... For an illustration of the rows of triangle consider the infinite "double-staircases" diagram defined in A335616. The first 15 levels of the structure looks like this: . Level "Double-staircases" diagram n _ 1 _|1|_ 2 _|1 _ 1|_ 3 _|1 |1| 1|_ 4 _|1 _| |_ 1|_ 5 _|1 |1 _ 1| 1|_ 6 _|1 _| |1| |_ 1|_ 7 _|1 |1 | | 1| 1|_ 8 _|1 _| _| |_ |_ 1|_ 9 _|1 |1 |1 _ 1| 1| 1|_ 10 _|1 _| | |1| | |_ 1|_ 11 _|1 |1 _| | | |_ 1| 1|_ 12 _|1 _| |1 | | 1| |_ 1|_ 13 _|1 |1 | _| |_ | 1| 1|_ 14 _|1 _| _| |1 _ 1| |_ |_ 1|_ 15 |1 |1 |1 | |1| | 1| 1| 1| . For n = 15, in the 15th level of the diagram we have that the first largest double-staircase has two horizontal steps, the second double-staircase has two steps, the third double-staircase has two steps, there are no steps in the fourth double-stairce and the fifth double-staircase has only one step, so the 15th row of triangle is [2, 2, 2, 0, 1].
Comments