A339276 Nearest integer to the fourth root of n.
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1
Examples
a(1) = 1 since 1^(1/4) = 1. a(6) = 2 since 6^(1/4) = 1.565... and its nearest integer is 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jonathan M. Borwein and others, Nearest Integer Zeta Functions, solution to Problem 10212, The American Mathematical Monthly, Vol. 101, No. 6 (1994), pp. 579-580.
Programs
-
Mathematica
Table[Round[Surd[n, 4]], {n, 1, 100}]
-
Python
from sympy import integer_nthroot def A339276(n): return (m:=integer_nthroot(n,4)[0])+((n<<4)>=((m<<1)+1)**4) # Chai Wah Wu, Jun 06 2025
Formula
Sum_{n>=1} 1/a(n)^s = 4*zeta(s-3) + zeta(s-1), for s>4 (Borwein, 1994).