cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339282 Triangle read by rows: T(n,k) is the number of unoriented series-parallel networks with n colored elements using exactly k colors.

Original entry on oeis.org

1, 2, 2, 4, 14, 10, 11, 84, 168, 98, 30, 522, 2109, 3004, 1396, 98, 3426, 24397, 63094, 67660, 25652, 328, 23404, 274626, 1142420, 2119985, 1805082, 576010, 1193, 165417, 3065376, 19230320, 54916745, 78809079, 55503392, 15282038, 4459, 1197934, 34201068, 311157620, 1283360335, 2761083930, 3220245007, 1932118328, 467747416
Offset: 1

Views

Author

Andrew Howroyd, Nov 30 2020

Keywords

Comments

Unoriented version of A339228. Equivalence is up to reversal of all parts combined in series.

Examples

			Triangle begins:
    1;
    2,     2;
    4,    14,     10;
   11,    84,    168,      98;
   30,   522,   2109,    3004,    1396;
   98,  3426,  24397,   63094,   67660,   25652;
  328, 23404, 274626, 1142420, 2119985, 1805082, 576010;
  ...
		

Crossrefs

Columns 1..2 are A339225, A339281.
Row sums are A339283.

Programs

  • PARI
    \\ R(n, k) gives colorings using at most k colors as a vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z)={my(p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+Z)))); p}
    R(n,k)={my(Z=k*x, q=subst(B((n+1)\2, Z), x, x^2), s=subst(Z,x,x^2)+q^2/(1+q), p=Z+O(x^2), t=p); for(n=1, n\2, t=Z + q*(1 + p); p=Z + x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2))) - t); Vec(p+t-Z+B(n,Z))/2}
    M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
    {my(T=M(8)); for(n=1, #T~, print(T[n, 1..n]))}