cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339287 Number of inequivalent colorings of unoriented series-parallel networks with n colored elements.

Original entry on oeis.org

1, 4, 15, 105, 873, 9997, 134582, 2096206, 36391653, 693779666, 14346005530, 319042302578, 7579064231400, 191264021808301, 5103735168371201, 143438421861618397, 4231407420255210941, 130633362289335958866, 4209546674788934624394, 141259712052820378949746
Offset: 1

Views

Author

Andrew Howroyd, Dec 22 2020

Keywords

Comments

Equivalence is up to permutation of the colors and reversal of all parts combined in series. Any number of colors may be used. See A339282 for additional details.

Examples

			In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 1: (1).
a(2) = 4: (11), (12), (1|1), (1|2).
a(3) = 15: (111), (112), (121), (123), (1(1|1)), (1(1|2)), (1(2|2)), (1(2|3)), (1|1|1), (1|1|2), (1|2|3), (1|11), (1|12), (1|22), (1|23).
		

Crossrefs

Cf. A339225 (uncolored), A339233 (oriented), A339280, A339282, A339283, A339645.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    B(n)={my(Z=x*sv(1), p=Z+O(x^2)); for(n=2, n, p=sEulerT(p^2/(1+p) + Z)-1); p}
    cycleIndexSeries(n)={my(Z=x*sv(1), q=sRaise(B((n+1)\2), 2), s=x^2*sv(2)+q^2/(1+q), p=Z+O(x^2), t=p); for(n=1, n\2, t=Z + q*(1 + p); p=Z + sEulerT(t+(s-sRaise(t, 2))/2) - t - 1); (p+t-Z+B(n))/2}
    InequivalentColoringsSeq(cycleIndexSeries(15))