A339297 Triangle read by rows: T(n,k) is the number of oriented series-parallel networks with n colored elements and without multiple unit elements in parallel using exactly k colors.
1, 1, 2, 2, 12, 12, 5, 64, 162, 108, 13, 354, 1734, 2760, 1380, 36, 1992, 16977, 48716, 56100, 22440, 103, 11538, 161691, 746316, 1488240, 1338120, 446040, 306, 68427, 1524969, 10652086, 32760180, 49718640, 36614760, 10461360, 930, 414294, 14382720, 146464740, 652517010, 1487453760, 1816345440, 1131883200, 282970800
Offset: 1
Examples
Triangle begins: 1; 1, 2; 2, 12, 12; 5, 64, 162, 108; 13, 354, 1734, 2760, 1380; 36, 1992, 16977, 48716, 56100, 22440; 103, 11538, 161691, 746316, 1488240, 1338120, 446040; ...
Programs
-
PARI
\\ R(n, k) gives colorings using at most k colors as a vector. EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n, k)={my(Z=k*x, p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p)} M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))} {my(T=M(8)); for(n=1, #T~, print(T[n, 1..n]))}
Comments