cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A339335 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^3.

Original entry on oeis.org

1, 3, 3, 6, 3, 12, 3, 13, 6, 12, 3, 30, 3, 12, 12, 24, 3, 30, 3, 30, 12, 12, 3, 69, 6, 12, 13, 30, 3, 57, 3, 42, 12, 12, 12, 87, 3, 12, 12, 69, 3, 57, 3, 30, 30, 12, 3, 141, 6, 30, 12, 30, 3, 69, 12, 69, 12, 12, 3, 165, 3, 12, 30, 73, 12, 57, 3, 30, 12, 57, 3, 216, 3, 12, 30
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2020

Keywords

Crossrefs

Formula

a(p^k) = A022568(k) for prime p.

A339336 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^4.

Original entry on oeis.org

1, 4, 4, 10, 4, 20, 4, 24, 10, 20, 4, 60, 4, 20, 20, 51, 4, 60, 4, 60, 20, 20, 4, 156, 10, 20, 24, 60, 4, 116, 4, 100, 20, 20, 20, 206, 4, 20, 20, 156, 4, 116, 4, 60, 60, 20, 4, 360, 10, 60, 20, 60, 4, 156, 20, 156, 20, 20, 4, 396, 4, 20, 60, 190, 20, 116, 4, 60, 20, 116, 4, 580
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2020

Keywords

Crossrefs

Formula

a(p^k) = A022569(k) for prime p.

A339337 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^5.

Original entry on oeis.org

1, 5, 5, 15, 5, 30, 5, 40, 15, 30, 5, 105, 5, 30, 30, 95, 5, 105, 5, 105, 30, 30, 5, 305, 15, 30, 40, 105, 5, 205, 5, 206, 30, 30, 30, 415, 5, 30, 30, 305, 5, 205, 5, 105, 105, 30, 5, 780, 15, 105, 30, 105, 5, 305, 30, 305, 30, 30, 5, 805, 5, 30, 105, 425, 30, 205, 5, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2020

Keywords

Crossrefs

Formula

a(p^k) = A022570(k) for prime p.

A339338 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^6.

Original entry on oeis.org

1, 6, 6, 21, 6, 42, 6, 62, 21, 42, 6, 168, 6, 42, 42, 162, 6, 168, 6, 168, 42, 42, 6, 540, 21, 42, 62, 168, 6, 330, 6, 384, 42, 42, 42, 750, 6, 42, 42, 540, 6, 330, 6, 168, 168, 42, 6, 1512, 21, 168, 42, 168, 6, 540, 42, 540, 42, 42, 6, 1464, 6, 42, 168, 855, 42, 330
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2020

Keywords

Crossrefs

Formula

a(p^k) = A022571(k) for prime p.

A339339 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^7.

Original entry on oeis.org

1, 7, 7, 28, 7, 56, 7, 91, 28, 56, 7, 252, 7, 56, 56, 259, 7, 252, 7, 252, 56, 56, 7, 889, 28, 56, 91, 252, 7, 497, 7, 665, 56, 56, 56, 1253, 7, 56, 56, 889, 7, 497, 7, 252, 252, 56, 7, 2702, 28, 252, 56, 252, 7, 889, 56, 889, 56, 56, 7, 2457, 7, 56, 252, 1589
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2020

Keywords

Crossrefs

Formula

a(p^k) = A022572(k) for prime p.

A339340 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^8.

Original entry on oeis.org

1, 8, 8, 36, 8, 72, 8, 128, 36, 72, 8, 360, 8, 72, 72, 394, 8, 360, 8, 360, 72, 72, 8, 1384, 36, 72, 128, 360, 8, 712, 8, 1088, 72, 72, 72, 1972, 8, 72, 72, 1384, 8, 712, 8, 360, 360, 72, 8, 4536, 36, 360, 72, 360, 8, 1384, 72, 1384, 72, 72, 8, 3880, 8, 72, 360
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2020

Keywords

Crossrefs

Formula

a(p^k) = A022573(k) for prime p.

A339735 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^9.

Original entry on oeis.org

1, -9, -9, 36, -9, 72, -9, -93, 36, 72, -9, -252, -9, 72, 72, 207, -9, -252, -9, -252, 72, 72, -9, 585, 36, 72, -93, -252, -9, -495, -9, -459, 72, 72, 72, 765, -9, 72, 72, 585, -9, -495, -9, -252, -252, 72, -9, -1278, 36, -252, 72, -252, -9, 585, 72, 585, 72, 72, -9, 1449
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339341(n/d) * a(d).
a(p^k) = A022604(k) for prime p.
Showing 1-7 of 7 results.