A339347 Primes p such that p < (gpf((p - 1)/gpf(p - 1)))^4, where gpf(k) is the greatest prime factor of k, A006530.
5, 7, 11, 13, 19, 31, 37, 43, 61, 67, 71, 73, 79, 101, 131, 151, 191, 197, 211, 239, 251, 281, 311, 331, 401, 419, 421, 431, 443, 461, 463, 491, 521, 547, 571, 599, 601, 617, 647, 659, 677, 683, 727, 743, 827, 859, 883, 911, 947, 953, 967, 1013, 1093, 1103
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)): is_a := n -> isprime(n) and n < (gpf((n-1)/gpf(n-1)))^4: select(is_a, [$5..1150]);
-
PARI
gpf(n) = if (n==1, 1, vecmax(factor(n)[, 1])); \\ A006530 isok(p) = isprime(p) && (p < (gpf((p - 1)/gpf(p - 1)))^4); \\ Michel Marcus, Dec 14 2020
Comments